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Using the generalized maximum entropy principle based on the nonextensiveq entropy, a family of random
matrix ensembles is generated. This family unifies previous extensions of random matrix theory(RMT) and
gives rise to an orthogonal invariant stable Lévy ensemble with new statistical properties. Some of them are
analytically derived.
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Random matrix theory(RMT) started in physics with the
introduction by Wigner, in the 50s, of Gaussian matrix en-
sembles: orthogonal(GOE), unitary (GUE), and symplectic
(GSE). Their properties were fully developed by Dyson,
Gaudin, Mehta and others[1]. These ensembles have a wide
application as models to describe statistical properties of
quantum fluctuations of systems of few- or many-body par-
ticles. They have been useful in discussing nuclear and
atomic properties, mesoscopic physics, quantum chaos,
theory of amorphous solids, etc.(see, for instance Ref.[2]).
The link between RMT and information theory was set by
Balian [3] who, by using the Boltzman-Gibbs-Shannon en-
tropy associated with the ensemble probability distribution,
obtained the Wigner ensembles by maximizing it subjected
to the normalization condition, and a constraint given by the
average norm of the matrices. Ensembles to describe sym-
metry breaking have been constructed by adding an extra
constraint to this scheme[4].

In this paper, we use this framework and consider en-
sembles within the generalized maximum entropy principle
(GMEP) based on the nonextensive Tsallis entropy[5]. This
entropy has been applied to a great variety of phenomena,
especially those in which long-range correlations are present
(see, however, Ref.[6] concerning its physical interpreta-
tion). It is dependent on the nonadditivity parameterq de-
fined in such a way that whenq→1 the Boltzman-Gibbs-
Shannon entropy is recovered. We show that a family of
ensembles is generated that unifies some important exten-
sions of RMT. In the range −̀,q,1, it is found to be a
restricted trace ensemble that interpolates between the
bounded trace ensemble[7] when q→−` and the Wigner-
Gaussian ensembles atq=1. In the domain 1,q,qmax, with
qmax being a cutoff imposed by the normalization condition,
it interpolates between RMT atq=1 and an ensemble of
Lévy matrices[8] that appears at the neighborhood of the
extremumqmax where the ensemble distribution has diver-
gent moments.

As extensions of RMT that preserve the stability of the
universal ensembles, Lévy matrices have recently attracted
much attention due to its potential application to many areas
ranging from physics to finances[8–10]. Stability means that
if H1 and H2 are matrices of the ensemble, their sumH
=H1+H2 also is[11]. This will be the case if the individual
matrix elements are distributed according to a Gaussian or a
Lévy function. We prove that this indeed happens, in the case
of the q-generalized ensembles, for all allowed values ofq,
i.e., −̀ ,q,qmax whenN goes to infinity.

Although the individual matrix element distribution ofq
ensembles have the same asymptotic behavior as the Lévy
matrices of Ref.[8], there is here a basic difference as they
are orthogonal invariant with matrix elements, in principle,
correlated. Orthogonal invariance is also satisfied by the en-
sembles of Refs.[9,10], which are directly defined in terms
of the joint distribution of eigenvalues. However, no explicit
reference to the matrix elements distribution is made there
and the spectral statistical measures are obtained expressing
them in terms of appropriately defined orthogonal polynomi-
als. Here, we do not apply this technique and show that the
special relation thatq ensembles have with the Gaussian en-
sembles allows their spectral properties to be analytically
derived.

Applied to matrices whose entries are random variables,
the nonextensive entropy can be written as

Sq =

1 −E dHPqsHd

q − 1
, s1d

whereH is aN3N matrix distributed according toPsHd and
dH is the product of differentials of the independent vari-
ables of the matrices. For definiteness we consider real sym-
metric matrices in which case we havef =NsN+1d /2 inde-
pendent matrix elements and the differential in(1) is
conveniently defined asdH=2NsN−1d/4p1øiø jøNdHij .

The GMEP consists of maximizing(1) subjected to nor-
malization

E dHPsHd = 1, s2d

and to the constraint[12]

E dHPqsHdtrH2 − mE dHPqsHd = 0 s3d

that fixes theq average of the norm defined as the trace of
the square of the matrices. Following the usual steps of the
variational method, we arrive at the probability distribution

PsH;l,ad = ZN
−1S1 +

a

l
trH2D1/s1−qd

, s4d

with l given by
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l =
1

q − 1
− am =

1

q − 1
−

f

2
. s5d

ZN in (4) is the partition function and(3) has been used to
determine the relationa= f /2m. Let us remark that had we
used Renyi’s entropy[13] instead of Eq.(1) we would also
have been led to Eq.(4).

Changing from matrix elements to eigenvalue and eigen-
vector variables, the ensemble distribution factorizes and, af-
ter integrating over the eigenvector parameters, we find for
the eigenvalues the joint probability distribution

PsE1,…EN;l,ad = KNS1 +
a

l
o Ek

2D1/s1−qd

p uEj − Eiu, s6d

whereKN is the normalization constant. Takingq→1 in the
above,l→` and the RMT distributions,

PGOEsH;ad = ZGOE,N
−1 exps− atrH2d s7d

and

PGOEsE1,…EN;ad = KGOE,N exps− a o Ek
2d p uEj − Eiu, s8d

are recovered.
Considering −̀ ,q,1, i.e., −f /2.l.−`, the condition

trsH2d=oEk
2,−l /a has to be imposed in order to warrant a

real positive probability distribution for anyq. These two
inequalities define hyperspheres in which the matrix ele-
ments and the eigenvalues are confined in their respective
spaces. Taking in Eq.(4) the limit q→−` with the partition
function given by

ZNsqd = S−
pl

a
D f/2GS2 − q

1 − q
D

Gs1 − ld , s9d

we find that the ensemble goes to the bounded trace en-
semble

PSH;−
f

2
,aD = S−

a

pl
D f/2

GS f

2
DQS f

2a
− trH2D , s10d

whereQsxd is the step function. The bounded trace ensemble
is known to follow the Wigner-Dyson statistics of the Gauss-
ian ensemble whenN→`. To show that this is also the case
for −`,q,1 we consider the probability distribution of a
generic matrix element,

psx;l,ad =Î−
a

pl

Gs1 − ld

GS1

2
− lDS1 +

a

l
x2D−s1/2d−l

, s11d

and the correlation between two matrix elementsh1 andh2,

Csh1,h2d = kh2l2 − ksh1h2d2l =
1

4a2

l2

s2 − lds1 − ld2 . s12d

By taking the limit of large matrices,(11) goes to the Gauss-
ian distribution

psx;l,ad ,Îa

p
exps− ax2d , s13d

while Csh1,h2d→0, indicating that the matrix elements be-
have as those of the Gaussian ensembles asN→`. Numeri-
cal simulations[14] confirm that the level density is given by
the Wigner semicircle law

rGOEsE;ad =5
2a

p
ÎN

a
− E2, uEu ,ÎN

a

0, uEu .ÎN

a

s14d

and spectral fluctuations follow GOE statistics.
Consider nowq.1. The partition function is given by

ZNsqd = Spl

a
D f/2 Gsld

GS 1

q − 1
D s15d

that requires the restrictionl.0 or q,qmax=1+s2/ fd. We
see that the introduction of the parameterl is crucial to be
able to study the limitN→`. It maps the interval 1,q
,qmax onto the interval̀ .l.0. The Fourier transform of
the distribution of a generic matrix element, Eq.(11), with
l.0 is

Fsk;l,ad =Î 2

p

1

Gsld
SkÎl

a
Dl

KlSkÎl

a
D , s16d

whereKlszd is the modified Bessel function[15]. In order to
ensure that spectra scale independently of the size of the
matrices,a has to go to infinity whenN does. This can be
seen from the analytic expression of the level density, Eq.
(27) below. The requirement is that a characteristic value, say
Ec=ÎNl /a, remains finite whenN diverges. In this limit,
Klszd can be replaced by its smallz expansion and keeping
only the first terms we can write

Fsk;l,ad , expS− LU k

2
Îl

a
UsD

with

s = 2 andL =
1

4sl − 1d
if ` . l . 1, s17d

and

s = 2l andL =
Gs1 − ld
Gs1 + ld

if 1 . l . 0. s18d

Therefore, for̀ .l.1 the distribution of a generic matrix
element approaches the Gaussian distribution

psx;l,ad .Îsl − 1da
pl

expF− sl − 1d
a

l
x2G . s19d

For 1.l.0 the Lévy-Gnedenko generalized central limit
holds [16] and psx;l ,ad goes to the Lévy function,
Lssx,s ,Ld=p−1e0

`dtexps−Ltsdcossxtd, with the same
asymptotic behavior, i.e.,
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psx;l,ad . 2Îa

l
L2lS2Îa

l
x,2l,

Gs1 − ld
Gs1 + ld

D . s20d

Concerning correlations between matrix elements, Eq.(12)
shows that only for large values ofl or a the matrix ele-
ments behave independently, whereas for small values,l
,2, they are strongly correlated. Therefore, for largel or a
(19) predicts that the level density goes to the semicircle
rGOE(E; sl−1dsa /ld), i.e., Eq. (14) with a replaced bysl
−1dsa /ld.

We focus now on the spectral properties of these new
ensembles. They are analytically derived by introducing the
representation

F1 +
a

l
trsH2dG1/s1−qd

=
1

GS 1

q − 1
DE0

`

dj exps− jdjf1/sq−1dg−1

3expS−
a

l
jtrH2D s21d

that allows the joint distribution function of the matrix ele-
ments to be written in terms of the joint distribution function
of the GOE ensemble as

PsH;l,ad =
1

GsldE0

`

dj exps− jdjl−1PGOESH;
a

l
jD; s22d

the joint distribution of eigenvalues becomes

PsE1,…,EN;l,ad =
KN

GS 1

q − 1
DE0

`

dj exps− jdjf1/sq−1dg−1

3expS−
a

l
jo Ek

2Dp uEj − Eiu, s23d

whereKN is the normalization constant. Integrating(23) over
all eigenvalues we deduce the relation

KN =
S2a

l
D f/2

GS 1

q − 1
D

Gsld
KGOE,N, s24d

relating KN to the corresponding RMT constant in standard
units, i.e.,a=1/2 in Eq.(8), see[1]. Substituting in(23) one
finally obtains for the normalized joint eigenvalue density

PsE1,…EN;l,ad =
1

GsldS2a

l
DN/2E

0

`

dj exps− jdjl+sN/2d−1

3PGOESÎjx1,…ÎjxN;
1

2
D , s25d

where we have introduced the rescaled eigenvaluesxk

=Îs2a /ldEk. This is one of the central results of this paper
and can be taken as the defining equation of the new en-
semble. It expresses the eigenvalue distribution of the new
ensemble as a sort ofG function of the GOE eigenvalue
distribution. It shows that one may expect that measures of
theq family will be weighted Laplace transforms of the cor-

responding measures of the Gaussian ensemble.
Integrating(25) over all eigenvalues but one, and multi-

plying by N, the average eigenvalue density is expressed in
terms of Wigner’s semicircle law as

rsE;l,ad =
1

Gsld
Î2a

l
E

0

sNld/saE2d
dj

3exps− jdjl−s1/2d 1

p
Î2N − 2

a

l
jE2. s26d

The asymptotic powe-law behavior of this distribution is bet-
ter seen by rewriting it as

rsE;l,ad =
N

uEu2l+1Îp
SNl

a
Dl GSl +

1

2
D

GsldGsl + 2d

3MSl +
1

2
,l + 2,−

Nl

aE2D , s27d

where Msa,b,zd is the confluent hypergeometric function
[15]. In Fig. 1, witha=N2 / s /2 [see Eqs.(17) and(18)] the
densityrsE;l ,ad is plotted for four values ofl, exhibiting
the deviation from the semicircle law asl moves inside the
interval 1.l.0. When l→0, the density behaves asr
.Nl / uEu2l+1 approaching the same behavior as for a noncon-
fining log square potential[17].

The behavior of the spectral fluctuations can be illustrated
by considering the gap probability functionEssd [usually de-
noted Es0,sd] that gives the probability of finding an
eigenvalue-free segment of lengths. This function has been
investigated in Ref.[10] for Cauchy ensembles and is related
to the presence of gaps in the spectrum. For theq -family it
is expressed in terms of the corresponding GOE function as

FIG. 1. The eigenvalue density for four values of the parameter
l (=10, 1, 0.75, 0.5) in the transition region from the Gaussian to
the Lévy regime, withN=50. For the sake of comparison, the semi-
circle rGOEfE; sl−1da/lg with l=10 and a=N2 / s /2 is also
shown(dashed line).
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Esud =
1

GsldE0

`

dj exps− jdjl−1EGOEXySÎ2aj

l
uDC , s28d

obtained by integrating the joint eigenvalue density over all
eigenvalues outside the intervals−u ,ud around the origin. In
(28) ysxd=2e0

xdtrGOEstd. Together with

ssud = 2E
0

u

dErsE;l,ad, s29d

(28) expressesEssd in a parametric form. Using the Wigner
surmise for the nearest-neighbor spacing distributionpssd
and the relation connectingEssd and pssd, EGOE in (28) can
be well approximated byEGOEsyd.1−erfsyÎp /2d. On Fig. 2
results in the Lévy regime are displayed. Notice the large
increase of the probability of formation of a gap with respect
to the GOE case. The asymptotic behavior in Eq.(28) can be

extracted by making the substitutionx=Îs2aj /lu that leads
to

Esud =
2

GsldS l

2a
Dl 1

u2lE
0

`

dxexpF−
l

2a
S x

u
D2G

3x2l−1EGOE„ysxd…. s30d

For largeu, this equation predicts forl=1 a power-law de-
cay Essd.1/2s2, clearly seen in Fig. 2.

In summary, we have proved that theq-generalized family
of ensembles interpolates between the bounded trace en-
semble[7] at the extremumq→−` and the Wigner-Gaussian
enscmbles atq=1. In the domain 1,q,qmax, it interpolates
between RMT atq=1 and an ensemble of Lévy matrices at
the neighborhood of the extremumqmax=1+2/f. These or-
thogonal invariant stable matrix ensembles have unique
spectral properties. Remarkably, several of their distribution
functions can be expressed as integral transforms(sort of
extendedG functions) of the corresponding distribution func-
tions of the Gaussian ensembles.

It is premature to exhibit specific applications of these
generalized ensembles. However, they are worth exploring
possibilities, for instance, connections with the so-called
critical statistics[18] or the transition from Erdös-Renyi to
scale-free models in random graph theory[19]. In conclu-
sion, let us remind that stable laws(Lévy laws) were intro-
duced and studied. It was correctly anticipated[16] that a
large domain of applications would follow[20]. We believe
that we are presently facing a similar situation, where the
role of a random variable is now being extended to the one
of a random matrix. The results presented here should con-
tribute to broaden the applications of random matrix theory.

After completion of this paper, we learned of Ref.[21]
closely related to the work presented here.

Fruitful discussions with C. Tsallis are acknowledged.
A.C.B. and M.P.P. are supported by the Conselho Nacional
de Pesquisas(CNPq). This work is supported by CAPES-
COFECUB.

[1] M. L. Mehta,Random Matrices(Academic, Boston, 1991).
[2] O. Bohigas, inChaos and Quantum Physics, edited by M.-J.

Giannoni, A. Voros, and J. Zinn-Justin(North Holland, Am-
sterdam, 1991); T. Guhret al., Phys. Rep.299, 189 (1998); P.
J. Forresteret al., J. Phys. A36, 12 (2003).

[3] R. Balian, Nuovo Cimento B57, 183 (1968).
[4] M. S. Husseinet al., Phys. Rev. Lett.70, 1089(1993); Phys.

Rev. C 47, 2401(1993).
[5] C. Tsallis, J. Stat. Phys.52, 479 (1988).
[6] M. Nauenberg, Phys. Rev. E67, 036114(2003); 69, 038102

(2004); C. Tsallis,ibid. 69, 038101(2004); Y. Y. Yamaguchiet
al., Physica A 337, 36 (2004).

[7] B. V. Bronk, thesis, Princeton University, 1964(unpublished);
see Chap. 19 of Ref.[1]; G. Akemannet al., Phys. Rev. E59,
1489 (1999); 60, 5287(1999).

[8] P. Cizeauet al., Phys. Rev. E50, 1810(1994).
[9] Z. Burdaet al., Phys. Rev. E65, 021106(2002).

[10] N. S. Witteet al., Nonlinearity 13, 1965(2000).
[11] M. Tierz, e-print cond-mat/0106485.

[12] C. Tsalliset al., Physica A 261, 534 (1998).
[13] A. Renyi, Proceedings of Fourth Berkeley Symposium of

Mathematical Statistics and Probability, edited by J. Neyman
(University of California, 1960), Vol. 1.

[14] A. C. Bertuola, Ph.D. thesis, Universidade de Sāo Paulo, 2004
(unpublished).

[15] Handbook of Mathematical Functions, edited by M.
Abramowitz and I. A. Stegun(Dover, New York, 1972).

[16] B. Gnedenko and A. Kolmogorov,Limit Distributions for
Sums of Independent Random Variables(Addison Wesley,
Reading, MA, 1954).

[17] K. A. Muttalib et al., Phys. Rev. Lett.71, 471 (1993); E.
Bogomolnyet al., Phys. Rev. E55, 6707(1997).

[18] A. M. García-Garcíaet al., Phys. Rev. E67, 046104(2003).
[19] R. Albert et al., Rev. Mod. Phys.74, 47 (2002).
[20] Levy Flights and Related Topics in Physics, M. F. Shlesinger

et al., Lecture Notes in Physics Vol. 450(Springer, Berlin,
1995), p. 196.

[21] F. Toscanoet al., Phys. Rev. E69, 066131(2004).
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theory, Eq. (28), and its asymptotics(dotted line); dashed line:
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