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Family of generalized random matrix ensembles
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Using the generalized maximum entropy principle based on the nonextensiteopy, a family of random
matrix ensembles is generated. This family unifies previous extensions of random matrix (RbbFy and
gives rise to an orthogonal invariant stable Lévy ensemble with new statistical properties. Some of them are
analytically derived.
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Random matrix theoryRMT) started in physics with the Although the individual matrix element distribution gf
introduction by Wigner, in the 50s, of Gaussian matrix en-ensembles have the same asymptotic behavior as the Lévy
sembles: orthogondlGOE), unitary (GUE), and symplectic matrices of Ref[8], there is here a basic difference as they
(GSB. Their properties were fully developed by Dyson, are orthogonal invariant with matrix elements, in principle,
Gaudin, Mehta and othef4]. These ensembles have a wide correlated. Orthogonal invariance is also satisfied by the en-
application as models to describe statistical properties ofemples of Refs[9,10], which are directly defined in terms
quantum fluctuations of systems of few- or many-body pars the joint distribution of eigenvalues. However, no explicit
ticles. They have been useful in discussing nuclear angaference to the matrix elements distribution is made there
atomic properties, mesoscopic physics, quantum chaogg the spectral statistical measures are obtained expressing
tThrclaorIy (lzft?TorphoasMsTolldsd giﬁc(see, ft(.)r mt?]tance Re[2]).t ,ihem in terms of appropriately defined orthogonal polynomi-

€ link between and information theory was Set by, s ere, we do not apply this technique and show that the

Balian [3] who, by using the Boltzman-Gibbs-Shannon en- . . . : )
tropy associated with the ensemble probability distribution,SDECIaI relation thatu_ensembles have W'th the Gauss'an en
embles allows their spectral properties to be analytically

obtained the Wigner ensembles by maximizing it subjected .
to the normalization condition, and a constraint given by theder'ved: . . .
average norm of the matrices. Ensembles to describe sym- AAPPlied to matrices whose entries are random variables,
metry breaking have been constructed by adding an extri'€ Nonextensive entropy can be written as

constraint to this schemd].

In this paper, we use this framework and consider en- 1 _f dHPA(H)
sembles within the generalized maximum entropy principle _ (1)
(GMEP) based on the nonextensive Tsallis entr¢py This %= q-1 ’

entropy has been applied to a great variety of phenomena,
especially those in which long-range correlations are presenthereH is aN X N matrix distributed according tB(H) and
(see, however, Refi6] concerning its physical interpreta- dH is the product of differentials of the independent vari-
tion). It is dependent on the nonadditivity parametede-  ables of the matrices. For definiteness we consider real sym-
fined in such a way that wheg—1 the Boltzman-Gibbs- metric matrices in which case we hateN(N+1)/2 inde-
Shannon entropy is recovered. We show that a family obendent matrix elements and the differential () is
ensembles is generated that unifies some important extegpnyeniently defined adH=2NN-DAT, _\dH;.
sions of RMT. In the range=<q<1, it is found to be a The GMEP consists of maximizingl) subjected to nor-
restricted trace ensemble that interpolates between the,jization
bounded trace ensemb|é&] wheng— - and the Wigner-
Gaussian ensemblesat 1. In the domain X < Qp,a, With
Omax PEING @ cutoff imposed by the normalization condition, J dHP(H) =1, 2
it interpolates between RMT aj=1 and an ensemble of
Lévy matrices[8] that appears at the neighborhood of theang to the constrairtL2]
extremumgq,,,, Where the ensemble distribution has diver-
gent moments. 5

As extensions of RMT that preserve the stability of the dePq(H)tfH _,U«f dHPA(H) =0 (3)
universal ensembles, Lévy matrices have recently attracted
much attention due to its potential application to many areagat fixes theq average of the norm defined as the trace of
ranging from physics to financg8-10. Stability means that  the square of the matrices. Following the usual steps of the

if H; and H, are matrices of the ensemble, their skin  yariational method, we arrive at the probability distribution
=H;+H, also is[11]. This will be the case if the individual

matrix elements are distributed according to a Gaussian or a _ i L\

Lévy function. We prove that this indeed happens, in the case PHN @) =2 |1+ XtrH , (4)
of the g-generalized ensembles, for all allowed valuegjof

i.e., =0 <q<(Qmax WhenN goes to infinity. with \ given by
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1 1 f
)\:q_l—a,u=q_1—§. (5) P(X;\, @) ~ \/gexp(—axz), (13)

Zy in (4) is the partition function and3) has been used to while C(hy,h,)— 0, indicating that the matrix elements be-
determine the relatiom=f/2u. Let us remark that had we have as those of the Gaussian ensembld$-asc. Numeri-
used Renyi's entropyl3] instead of Eq(1) we would also  cal simulation§14] confirm that the level density is given by

have been led to Eq4). the Wigner semicircle law
Changing from matrix elements to eigenvalue and eigen-
vector variables, the ensemble distribution factorizes and, af- 2a A IN_ E2, |E|< \/E
ter integrating over the eigenvector parameters, we find for T Va ’ a
the eigenvalues the joint probability distribution peoeE; @) = N (14)
0, |E| > \/;

1/(1-q)
) ITIg-El, (8

o
P(Ey,...EnN, @) =K <1+—E E2
' N N A “ and spectral fluctuations follow GOE statistics.
Consider nowg>1. The partition function is given by

T f/2 r
ZN(Q):(_)\> Ll)
)
q-1

that requires the restriction>0 or q<(m,,=1+(2/f). We
p E,. .Eya)=K exd - E2 E-E| (8 see that the introduction of the paramekeis crucial to be
coelEy ni @) = Kooen p( a2 k)H| =Bl ® able to study the limitN—c. It maps the interval ¥ q
are recovered. < Qmax ONtO the intervabe>\>0. The Fourier transform of
Considering < <q<1, i.e., £/2>\> -, the condition the distribution of a generic matrix element, K1), with
tr(H?)=3E<-\/a has to be imposed in order to warrant ar>0lis
real positive probability distribution for ang. These two 2 1 A\ N
inequalities define hyperspheres in which the matrix ele- F(k;\,a) = _F_ ka/— | Kylk/— ], (16
ments and the eigenvalues are confined in their respective mI'(\) @ @
spaces. Taking in Eq4) the limit g— —c with the partition  whereK, () is the modified Bessel functi¢h5]. In order to

whereKy is the normalization constant. Takimg— 1 in the
above, A —» and the RMT distributions,

Peoe(H; @) = Zgoey expl— atrH?) (7)

(15

and

function given by ensure that spectra scale independently of the size of the
matrices,a has to go to infinity wherN does. This can be

p(ﬂ) seen from the analytic expression of the level density, Eq.

Z\(Q) = (_ 77_)\)“2 1-q 9) (27) below. The requirement is that a characteristic value, say
N a) T(1-N)" E.=VN\/a, remains finite wherN diverges. In this limit,

K, (2) can be replaced by its smallexpansion and keeping
we find that the ensemble goes to the bounded trace efmly the first terms we can write

semble
k N7
12 F(k;\,a) ~exp —A| =/ —
f a f f ) 2
PIlH,-<-,a|=|-—| T|Z]|O{—-trH"|, (10 «
2 A 2 2 .
with

where®(x) is the step function. The bounded trace ensemble
is known to follow the Wigner-Dyson statistics of the Gauss- o=2andA = A1 if o>\N>1, (17)
ian ensemble wheN— . To show that this is also the case ( )
for —o<q<<1 we consider the probability distribution of a gnd
generic matrix element,

—ovanda= N 1oy s0. (19

a TA-N) [, a ) @2 7" TT(L+N) '
POGN, @) = /= ———(1+x , (11
W)\FG _ ) A Therefore, fore>\>1 the distribution of a generic matrix
2 element approaches the Gaussian distribution
i i J(AN-1
and the correlation between two matrix elememt@ndh,, OGN, @) = ( )aexp[— (n— 1)gx2}. (19
1 \2 TN A

Clhy,hy) :<h2>2_<(h1h2)2>:E(Z—)\)(l—)\)z' (12 For 1>1>0 the Lévy-Gnedenko generalized central limit

holds [16] and p(x;\,a) goes to the Lévy function,
By taking the limit of large matriceg11) goes to the Gauss- L,(x,o,A)=7"1[jdtexp—-At%)cogxt), with the same
ian distribution asymptotic behavior, i.e.,
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W a a  T(A-)N o
p(x,)\,a)—2\/:L2)\<2\/:x,2)\,r(1+)\)). (20)

100 |

Concerning correlations between matrix elements, (E8)
shows that only for large values af or « the matrix ele-

ments behave independently, whereas for small valhes, or
<2, they are strongly correlated. Therefore, for laxger « N=50
(19) predicts that the level density goes to the semicircle Poeof
pcoelE; (N=1)(a/N)), i.e., Eg.(14) with « replaced by(A
=1)(alN). “or
We focus now on the spectral properties of these new \
ensembles. They are analytically derived by introducing the 2= “*
representation
o 1/(1-q) 1 0 o 0.0 05 1.0 15 20 25
1+ —tr(H?) = —f d¢ exp(- g gHiabl-t £
A F(i) 0 FIG. 1. The eigenvalue density for four values of the parameter
g-1 \ (=10, 1, 0.75, 0.bin the transition region from the Gaussian to
the Lévy regime, witiN=50. For the sake of comparison, the semi-
Xex;{— ggtrH2> (21)  circle peod E:(\-1) a/\] with A\=10 and a=N?/?/2 is also
A shown(dashed ling

that allows the joint distribution function of the matrix ele-

ments to be written in terms of the joint distribution function responding measures of the Gaussian ensemble.

of the GOE ensemble as Integrating(25) over all eigenvalues but one, and multi-
plying by N, the average eigenvalue density is expressed in
terms of Wigner’s semicircle law as

1 “ a
P(H;\, o) = mf dé exp(—- g)gh‘1P60E<H;X§>; (22
0

2
the joint distribution of eigenvalues becomes p(E:N.a) = ﬁ /%I(Nx)/(aE ) d
0

P(Ey . Bk, @) = — ot J dgex- vy . -
F<—) ° Xexp— £ &M= [2N-2=¢E2. (26)
g-1 T A

><exp<— %52 Eﬁ)]—[ [Ej-El, (23)  The asymptotic powe-law behavior of this distribution is bet-
ter seen by rewriting it as
whereKy, is the normalization constant. Integrati(®B) over

all eigenvalues we deduce the relation 1

20\ 2 1 N NA 2

— '\ —= p(E:Na) = ————=|—

A g-1 E2MNa\ @/ TINT(N+2)

Kn= KeoEN: (24)
') 1 NA
. _ _ XMIN+ - N +2,-—; |, (27

relating Ky to the corresponding RMT constant in standard 2 aE

units, i.e.,a=1/2 in Eq.(8), see[1]. Substituting in(23) one
finally obtains for the normalized joint eigenvalue density \\here M(a,b,2) is the confluent hypergeometric function

1 (24\N2 (= [15]. In Fig. 1, with@=N?/?/2 [see Eqs(17) and(18)] the
P(Ey,...EnN @) = ﬁ(?) f dé exp(— § V2t densityp(E; N, @) is plotted for four values ok, exhibiting
() 0 the deviation from the semicircle law asmoves inside the
— - 1 interval 1>\>0. When\ —0, the density behaves as
X PGOE< VEXq, ..V EXNS 5) , (25  =N/|E|?*! approaching the same behavior as for a noncon-

fining log square potentidltl7].
where we have introduced the rescaled eigenvalges The behavior of the spectral fluctuations can be illustrated
=\ (2a/N\)E,. This is one of the central results of this paper by considering the gap probability functidts) [usually de-
and can be taken as the defining equation of the new emoted E(0,s)] that gives the probability of finding an
semble. It expresses the eigenvalue distribution of the newigenvalue-free segment of lengthThis function has been
ensemble as a sort df function of the GOE eigenvalue investigated in Refl10] for Cauchy ensembles and is related
distribution. It shows that one may expect that measures ab the presence of gaps in the spectrum. Forghamily it
the g family will be weighted Laplace transforms of the cor- is expressed in terms of the corresponding GOE function as
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FIG. 2. The eigenvalue-free probabilig(s) for \=1. Full line:

theory, Eq.(28), and its asymptoticgdotted ling; dashed line:
Egod(S); * : numerical simulation withN=20. See text for further

explanation.

1 * 2
E(0) = mfo dé exp(— f)f)\_lEGOE(y< \/ Tgﬁ)) (28)
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extracted by making the substituticrr /(2:£/\ 6 that leads

to
2 [(A\1 ([ N[ x\2
E“*m(—a) ?f dp{z—@ ]

XXM EGoe(Y(X)). (30)

For large, this equation predicts far=1 a power-law de-
cay E(s)=1/2s? clearly seen in Fig. 2.

In summary, we have proved that theyeneralized family
of ensembles interpolates between the bounded trace en-
semblg[7] at the extremung— — and the Wigner-Gaussian
enscmbles afj=1. In the domain ¥ q< Q. it interpolates
between RMT ag=1 and an ensemble of Lévy matrices at
the neighborhood of the extremugy,,,=1+2/f. These or-
thogonal invariant stable matrix ensembles have unique
spectral properties. Remarkably, several of their distribution
functions can be expressed as integral transfofsast of
extended” functiong of the corresponding distribution func-
tions of the Gaussian ensembles.

It is premature to exhibit specific applications of these
generalized ensembles. However, they are worth exploring
possibilities, for instance, connections with the so-called
critical statistics[18] or the transition from Erdds-Renyi to

obtained by integrating the joint eigenvalue density over allscale-free models in random graph thedig]. In conclu-

eigenvalues outside the interva, #) around the origin. In

(28) y(x)=2[3dtpgoe(t). Together with

[
s(a):zf dEp(E;\, @), (29)
0

(28) expresse&(s) in a parametric form. Using the Wigner

surmise for the nearest-neighbor spacing distribufigs)
and the relation connectin(s) andp(s), Egog in (28) can
be well approximated bgog(y) =1-erflyVw/2). On Fig. 2

sion, let us remind that stable lawisévy laws were intro-
duced and studied. It was correctly anticipafd®] that a
large domain of applications would folloy20]. We believe
that we are presently facing a similar situation, where the
role of a random variable is now being extended to the one
of a random matrix. The results presented here should con-
tribute to broaden the applications of random matrix theory.

After completion of this paper, we learned of RE21]
closely related to the work presented here.
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